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Project outline

= Collaboration between Pfizer, RTC at
Cambridge, Boston and IMB at UQ.

= Development of novel biological

network analysis methods and
BioMANTA Infrastructure for querying biological
data in a semantically-enabled format.

Modeling
and = Key Components
Analysis of = Knowledge Representation
Biological = Knowledge Discovery
Network = Visualization
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Problem overview

= Proteins operate as a part of highly interconnected cellular
networks referred to as Interactome networks to perform
their functionality.

= Only a small portion of these interaction networks
known.

= The objective is to infer high coverage networks

= To analyse interrelationships between drug targets and disease-
gene products (bipartite graph) to gain insights of drug targets in
the context of cellular and disease networks

w= To reconstruct a network of genes (and their products) linked to
particular disease for instance, Alzheimer’s

= To elucidate signaling pathways and biological functions related to
genes/proteins networks to understand cellular functionality
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BioMANTA: Our proposed framework

Knowledge Representation w‘ STEP < Eransformation and Meta Analysis

STEP 1

Low coverage network high
confidence network

STEP 2

High coverage network

!

HOW->

Transformation } STEP3 >[ Knowledge Discovery
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Network inference techniques

Unsupervised methods
= Bayesian networks

= Differential equations

= Similarity based methods

= Hybrid methods

K. Bleakley et al., Bioinformatics, 2007.

= Advantages/Disadvantages
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Network inference techniques (cont ...)

Supervised methods

+ 1
= SVM O )
-1
. Stochastic methods O 1 N
O \ O d
N
-1 \
= NN \
O +1 O .
@\ Pros/CO nS K. Bleakley et al., Bioinformatics, 2007.
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Proposed model

Semi-Supervised Model

= To Infer new links while concomitantly keeping
FDR low.

= Integration of networks using heterogenous data

sources.
= Inference using:

A. Expression data (N,,,) [n * m]

B. Protein localization data (N, ) [n * 22]

C. Phylogenetic profiles (N , ) [n*145]

phy
N=""wN,
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Proposed model (cont ...)

Scoring high confidence interactions

wEach PPI interaction is assigned a score based on experimental
method and the number of instances an interaction is reported in
the literature.

= The weights are computed using:

where

= C Is a score assigned to each interaction

w= M are the number of observations reporting i interaction
= o 1S the throughput weight assigned to each observation

= [ 1s the confidence weight assigned to experimental method
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Proposed model (cont ...)

Data sets

= Yeast
w157 different time stamps

= Homo sapiens
w13 different types of cancer/non-cancerous tissue data
Including:
breast, pancreas, colon, brain, bladder, ovary, uterus,
kidney, liver, lung, lymphoma, stomach, and prostate

tissues

= Mouse
Idiopathic heart failure and normal heart data
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Proposed model (cont ...)

ROC curves: Suptrviscd approach
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Y. Yamanishi et al., Bioinformatics, 2005.
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Meta analysis

= After network inference, meta analysis methods are

applied to search systematic properties of complex
disease  genes with respect to their
connectedness.

Methods:
= Probabilistic Flow Analysis

= Markov Clustering
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Meta analysis (cont ...)

S. E. Calvano et al., Nature Letter, 2007.
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Y. Muhammed et al., Nature Biotechnology, 2007.
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Conclusions

= Inference of high coverage biochemical networks
are 1mportant to find the interrelationships
between drug targets and disease-gene products.

= Once the networks are inferred meta analysis
methods are applied to infer important pathways
(hub genes/protein networks).

= The Interaction strengths are fed back to
knowledge representation model to increase the
likelihood for the selection of high quality
Interactions.
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